76 research outputs found

    Compiler Front End Fusion

    Get PDF

    Gene- and cell-based therapy of muscle system hereditary disorders: State-of-art

    Get PDF
    Genetic disorders primarily affecting skeletal muscles can be caused by dysfunction of more than 30 genes. To date there is no effective etiotropic and pathogenetic treatment of such disorders. Investigators focus on search for new therapeutic agents based on gene and cell technologies, small molecules as well. There are numerous preclinical and several dozens of clinical studies in the world. Unfortunately tested technologies did not lead to significant advance in treatment of patients with such disorders. At the same time resulting data allow to determine the most feasible directions of future development combining of genome correction methods with cell delivery of corrected genome to skeletal muscles. This review is intended to give general information about etiology of skeletal muscles genetic disorders, the main directions of biotechnological development and results of the clinical studies

    Ordinary and Activated Bone Grafts: Applied Classification and the Main Features

    Get PDF
    © 2015 R. V. Deev et al. Bone grafts are medical devices that are in high demand in clinical practice for substitution of bone defects and recovery of atrophic bone regions. Based on the analysis of the modern groups of bone grafts, the particularities of their composition, the mechanisms of their biological effects, and their therapeutic indications, applicable classification was proposed that separates the bone substitutes into "ordinary" and "activated." The main differential criterion is the presence of biologically active components in the material that are standardized by qualitative and quantitative parameters: growth factors, cells, or gene constructions encoding growth factors. The pronounced osteoinductive and (or) osteogenic properties of activated osteoplastic materials allow drawing upon their efficacy in the substitution of large bone defects

    Combined use of plasmid drug pCMV-VEGFA and autodermoplasty for stimulation of skin defects healing in the experiment

    Get PDF
    © 2018 Human Stem Cell Institute. All rights reserved. To find effective ways to stimulate chronic skin wounds healing (including deep burns, diabetic and trophic ulcers) is an actual multidisciplinary task. The aim of our study was to assess the potential of using autodermoplasty in combination with plasmid drug pCMV-VEGFA to optimize skin defects repair in the experiment. Autodermoplasty was performed on Wistar rats. The size of the skin flap was 22 cm. Immediately after surgery the animals of the test group (n=8) underwent intradermal injection in the periphery of autotransplant with 1 ml solution containing 0.3 mg of supercoiled plasmid DNA pCMV-VEGFA, rats of the control group (n=8) received 1 ml of 0.9 % NaCl. The results were analyzed in 3, 6, 9 12, 18 days using macroscopic evaluation, laser Doppler flowmetry, histological methods. Macroscopically in the test group necrosis of the transplanted skin flap was found at later periods of observation, in one case complete survival of autotransplant was observed. The results of laser Doppler flowmetry in the group with plasmid DNA did not have statistically significant differences with control. The wound defect diameter in the test group at 12 days was 5,52± 4.80 mm, in the control 12,45±0,82 mm (p=0,03); 2,53±of 2,94 mm and 4,23±3,5 mm (p=0,067) at 18 days, respectively. At 18 days, the average number of vessels under the flap in the central zone were: of 26±2,9 in the test group and 20±8 in control; it the peripheral zone 27±3,4 and of 12,1±3,9 (p=0,035), respectively; in the skin muscle 21,2±of 3,9 and 12,4±3,6 (p=0,04), respectively. Thus, the use of plasmid drug pCMV-VEGFA improved the skin healing after autodermoplasty

    Biological activity comparative evaluation of the gene-Activated bone substitutes made of octacalcium phosphate and plasmid DNA carrying VEGF and SDF genes: Part 1 - in vitro

    Get PDF
    High need for effective bone substitutes and drawbacks of the materials approved for clinical use determine the increasing activity of biomedical research in this area. We have developed gene-Activated bone substitutes consisting of a scaffold based on octacalcium phosphate (OCP) and one of the two variants of plasmid DNA carrying either a gene for vascular endothelial growth factor (VEGF) or two genes encoding VEGF and stromal derived factor- 1α (SDF-1α). The aim of the study was to evaluate the cytotoxicity of the gene-Activated materials and their components, as well as biological activity in vitro. We found that both OCP and gene-Activated bone substitutes did not have any cytotoxicity, but reduced the proliferative activity of human bone marrow-derived multipotent mesenchymal stromal cells: material with doublegene construct decreased cell culture doubling rate of 24.3% more compared with the material carrying plasmid DNA encoding only VEGF. Both gene-Activated materials led to an increase in therapeutic genes mRNA levels, but the material with double-gene system enhanced VEGF protein production greater. Thus, the gene-Activated bone substitutes characterized by the absence of cytotoxic properties and possessed a specific activity increasing expression of the therapeutic genes. However, further studies are needed to detail the identified characteristics and assess the feasibility of the defined biological action in vivo

    Effects of autologous gingiva-derived cells with myogenic potential on regeneration of skeletal muscle

    Get PDF
    In our recent studies we found for the first time the ability of human multipotent mesenchymal stromal cells (MSCs) derived from alveolar gingiva (alveolar mucosa) to differentiate into myogenic direction. The aim of the present study was to evaluate the effects of autologous gingiva-derived MSCs with myogenic potential on the regeneration of muscular tissue after mechanical damage. The study was conducted on 11 male rabbits. Biopsy of alveolar gingiva was performed at each animal before experiment for autologous MSCs obtainment. Cultures of MSCs were induced in vitro into myogenic direction. To model the damage, the medial heads of the gastrocnemius muscles were intersected on both pelvic limbs of the rabbit. Injection of autologous MSCs was performed on the seventh day after injury into the damaged muscle of one of the extremities, while equal volume of saline (control) was injected into the muscle of the contralateral limb. The animals were sacrificed on 0, 21, and 35 days after the administration of cells. MSCs transplantation led to significant reduction of the area of muscle damage. Immunohistochemical analysis revealed earlier increase in the proportion of MyoD- and myogenin-positive cells, as well as decrease in the expression of Ki-67 in damaged tissue, in experimental group compared to the control. Autologous cells did not significantly affect the composition of muscle fibers. Significant decrease in the proportion of fibrous tissue was also observed in the experimental group. The results indicate the effectiveness of autologous alveolar gingiva-derived MSCs for treatment of mechanical damage of muscle tissue. Local administration of cells accelerated reparative regeneration and prevented fibrosis

    Rare copy number variation in posttraumatic stress disorder

    Get PDF
    Posttraumatic stress disorder (PTSD) is a heritable (h2 = 24-71%) psychiatric illness. Copy number variation (CNV) is a form of rare genetic variation that has been implicated in the etiology of psychiatric disorders, but no large-scale investigation of CNV in PTSD has been performed. We present an association study of CNV burden and PTSD symptoms in a sample of 114,383 participants (13,036 cases and 101,347 controls) of European ancestry. CNVs were called using two calling algorithms and intersected to a consensus set. Quality control was performed to remove strong outlier samples. CNVs were examined for association with PTSD within each cohort using linear or logistic regression analysis adjusted for population structure and CNV quality metrics, then inverse variance weighted meta-analyzed across cohorts. We examined the genome-wide total span of CNVs, enrichment of CNVs within specified gene-sets, and CNVs overlapping individual genes and implicated neurodevelopmental regions. The total distance covered by deletions crossing over known neurodevelopmental CNV regions was significant (beta = 0.029, SE = 0.005, P = 6.3 × 10-8). The genome-wide neurodevelopmental CNV burden identified explains 0.034% of the variation in PTSD symptoms. The 15q11.2 BP1-BP2 microdeletion region was significantly associated with PTSD (beta = 0.0206, SE = 0.0056, P = 0.0002). No individual significant genes interrupted by CNV were identified. 22 gene pathways related to the function of the nervous system and brain were significant in pathway analysis (FDR q < 0.05), but these associations were not significant once NDD regions were removed. A larger sample size, better detection methods, and annotated resources of CNV are needed to explore this relationship further

    Gene- and cell-based therapy of muscle system hereditary disorders: State-of-art

    No full text
    Genetic disorders primarily affecting skeletal muscles can be caused by dysfunction of more than 30 genes. To date there is no effective etiotropic and pathogenetic treatment of such disorders. Investigators focus on search for new therapeutic agents based on gene and cell technologies, small molecules as well. There are numerous preclinical and several dozens of clinical studies in the world. Unfortunately tested technologies did not lead to significant advance in treatment of patients with such disorders. At the same time resulting data allow to determine the most feasible directions of future development combining of genome correction methods with cell delivery of corrected genome to skeletal muscles. This review is intended to give general information about etiology of skeletal muscles genetic disorders, the main directions of biotechnological development and results of the clinical studies
    corecore